Hall Ticket Number:

Code No. : 31024 O2

VASAVI COLLEGE OF ENGINEERING (Autonomous), HYDERABAD M.C.A. I-Semester Backlog Examinations, Dec.-2018/Jan.-2019

Computer Organization

Time: 3 hours

Max. Marks: 60

Note: Answer ALL questions in Part-A and any FIVE from Part-B

Part-A (10 × 2 = 20 Marks)

- 1. What is the purpose of Boolean Algebra?
- 2. How is overflow condition detected? Give an example.
- 3. Illustrate shift operations.
- 4. List various memory reference instructions.
- 5. List different Instruction formats.
- 6. Show the Mapping process of Instruction Code to Microinstruction address.
- 7. List major characteristics of RISC.
- 8. Define Assembler.
- 9. Illustrate handshaking in Asynchronous data transfer.
- 10. Define Page Fault.

Part-B $(5 \times 8 = 40 \text{ Marks})$

11.	a) Simplify using 3-Variable maps: $F(x,y,z) = \sum (3,4,6,7)$	[5]
	b) Show how Decoders with enable inputs can be connected to form a large Decoder?	[3]
12.	a) Develop 4-bit Arithmetic Circuit that can perform various arithmetic micro-operation. Give its function table.	s. [3]
	b) Draw and explain Instruction cycle.	[5]
13.	a) Explain micro-programmed control organization with diagram.	[4]
	b) Draw the flow chart for the first pass of the 2-pass assembler.	[4]
14.	a) Explain Addressing Modes with example.	[5]
	b) Write short notes on pipelining.	[3]
15.	a) Discuss the Memory hierarchy.	[5]
	b) Solve the given problem: If Address space is 16k, Memory space is 8k and page size 1k. What is the logical address size (page number size and line number size) a physical address size (block number size and line number size)? How many pages c be accommodated in main memory and what is the size of page table and how ma pages will have presence bit as 1?	nd an
16.	a) Explain different Flip-Flops.	[4]
	b) Illustrate the Interrupt cycle with the help of flow chart.	[4]
17.	Answer any two of the following:	
	a) Draw and explain the Micro-program sequencer.	[4]
	b) Explain Booth's algorithm with example.	[4]
	c) Illustrate DMA transfer in a computer system.	[4]

ശശങ്ങാളാളാ